[1] Han B, Zheng R, Zeng H, et al.Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent,2024,4(1): 47-53.
[2] Eaden JA, Abrams KR, Mayberry JF.The risk of colorectal cancer in ulcerative colitis: a meta-analysis[J]. Gut,2001,48(4): 526-535.
[3] Doubeni CA, Corley DA, Quinn VP, et al.Effectiveness of screening colonoscopy in reducing the risk of death from right and left colon cancer: a large community-based study[J]. Gut, 2018,67(2):291-298.
[4] Nishihara R, Wu K, Lochhead P, et al.Long-term colorectal-cancer incidence and mortality after lower endoscopy[J]. N Engl J Med,2013,369(12):1095-1105.
[5] Smith RA, Cokkinides V, Brawley OW.Cancer screening in the United States,2012:a review of current American Cancer Society guidelines and current issues in cancer screening[J]. CA Cancer J Clin,2012,62(2):129-142.
[6] Huang HY, Shi JF, Guo LW, et al.Expenditure and financial burden for the diagnosis and treatment of colorectal cancer in China: a hospital-based, multicenter, cross-sectional survey[J]. Chin J Cancer,2017,36(1):41.
[7] Lui TKL, Guo CG, Leung WK.Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps:a systematic review and meta-analysis[J]. Gastrointest Endosc,2020,92(1):11-22.
[8] Wang P, Berzin TM, Glissen Brown JR, et al.Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates:a prospective randomised controlled study[J]. Gut,2019,68(10):1813-1819.
[9] Wang P, Liu X, Berzin TM, et al.Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial):a double-blind randomised study[J]. Lancet Gastroenterol Hepatol,2020,5(4):343-351.
[10] Repici A, Badalamenti M, Maselli R, et al.Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial[J]. Gastroenterology,2020,159(2): 512-520.
[11] Gong D, Wu L, Zhang J, et al.Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL):a randomised controlled study[J]. Lancet Gastroenterol Hepatol,2020,5(4):352-361.
[12] Su J R, Li Z, Shao XJ, et al.Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection:a prospective randomized controlled study (with videos)[J]. Gastrointest Endosc,2020,91(2):415-424.
[13] Djinbachian R, Haumesser C, Taghiakbari M, et al.Autonomous artificial intelligence vs artificial intelligence-assisted human optical diagnosis of colorectal polyps:a randomized controlled trial[J]. Gastroenterology,2024,167(2):392-399.
[14] Lui TKL, Hui CKY, Tsui VWM, et al.New insights on missed colonic lesions during colonoscopy through artificial intelligence-assisted real-time detection (with video)[J]. Gastrointest Endosc,2021,93(1):193-200.
[15] Wang P, Liu P, Glissen Brown JR, et al.Lower adenoma miss rate of computer-aided detection-assisted colonoscopy vs routine white-light colonoscopy in a prospective tandem study[J]. Gastroenterology,2020,159(4):1252-1261.
[16] Zhang WT, Chen XJ, Wong KC.Noninvasive early diagnosis of intestinal diseases based on artificial intelligence in genomics and microbiome[J]. J Gastroenterol Hepatol,2021,36(4): 823-831.
[17] Xu H, Tang RSY, Lam TYT, et al.Artificial intelligence-assisted colonoscopy for colorectal cancer screening: a multicenter randomized controlled trial[J]. Clin Gastroenterol Hepatol,2023,21(2):337-346.
[18] Sirinukunwattana K, Domingo E, Richman SD, et al.Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning[J]. Gut,2021,70(3): 544-554.
[19] Yu G, Sun K, Xu C, et al.Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images[J]. Nat Commun,2021,12(1):6311.
[20] Yamashita R, Long J, Longacre T, et al.Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study[J]. Lancet Oncol,2021,22(1): 132-141.
[21] Wagner SJ, Reisenbüchler D, West NP, et al.Transformer-based biomarker prediction from colorectal cancer histology: a large-scale multicentric study[J]. Cancer Cell,2023,41(9): 1650-1661.
[22] Niehues JM, Quirke P, West NP, et al.Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: a retrospective multi-centric study[J]. Cell Rep Med,2023,4(4):100980.
[23] Ikezogwo WO, Seyfioglu MS, Ghezloo F, et al.Quilt-1M: one million image-text pairs for histopathology[J]. Adv Neural Inf Process Syst,2023,36(Db1):37995-38017.
[24] Chen RJ, Ding T, Lu MY, et al.Towards a general-purpose foundation model for computational pathology[J]. Nat Med, 2024,30(3):850-862.
[25] Huang Z, Bianchi F, Yuksekgonul M, et al.A visual-language foundation model for pathology image analysis using medical Twitter[J]. Nat Med,2023,29(9):2307-2316.
[26] Lu MY, Chen B, Williamson DFK, et al.A visual-language foundation model for computational pathology[J]. Nat Med, 2024,30(3):863-874.
[27] Tan Y, Liu R, Xue JW, et al.Construction and validation of artificial intelligence pathomics models for predicting pathological staging in colorectal cancer: using multimodal data and clinical variables[J]. Cancer Med,2024,13(7):e6947.
[28] Li H, Chen XL, Liu H, et al.MRI-based multiregional radiomics for preoperative prediction of tumor deposit and prognosis in resectable rectal cancer: a bicenter study[J]. Eur Radiol,2023,33(11):7561-7572.
[29] Li H, Chai L, Pu H, et al.T2WI-based MRI radiomics for the prediction of preoperative extranodal extension and prognosis in resectable rectal cancer[J]. Insights Imaging,2024,15(1):57.
[30] Dasari A, Shen C, Halperin D, et al.Trends in the incidence, prevalence,and survival outcomes in patients with neuroendocrine tumors in the United States[J]. JAMA Oncol,2017,3(10):1335-1342.
[31] Kooyker AI, Verbeek WH, Van Den Berg JG, et al. Change in incidence, characteristics and management of colorectal neuroendocrine tumours in the Netherlands in the last decade[J]. United European Gastroenterol J,2020,8(1):59-67.
[32] Leoncini E, Boffetta P, Shafir M, et al.Increased incidence trend of low-grade and high-grade neuroendocrine neoplasms[J]. Endocrine,2017,58(2):368-379.
[33] Sung H, Ferlay J, Siegel RL, et al.Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249.
[34] Chen HT, Xu GQ, Teng XD, et al.Diagnostic accuracy of endoscopic ultrasonography for rectal neuroendocrine neoplasms[J]. World J Gastroenterol,2014,20(30):10470-10477.
[35] Dhali A, Kipkorir V, Srichawla BS, et al.Artificial intelligence assisted endoscopic ultrasound for detection of pancreatic space-occupying lesion:a systematic review and meta-analysis[J]. Int J Surg,2023,109(12): 4298-4308.
[36] Yang X, Wang H, Dong Q, et al.An artificial intelligence system for distinguishing between gastrointestinal stromal tumors and leiomyomas using endoscopic ultrasonography[J]. Endoscopy,2022,54(3):251-261.
[37] Uema R, Hayashi Y, Kizu T, et al.A novel artificial intelligence-based endoscopic ultrasonography diagnostic system for diagnosing the invasion depth of early gastric cancer[J]. J Gastroenterol,2024,59(7):543-555.
[38] Zhang W, Chen X, Wong KC.Noninvasive early diagnosis of intestinal diseases based on artificial intelligence in genomics and microbiome[J]. J Gastroenterol Hepatol,2021,36(4): 823-831.
[39] Tontini GE, Vecchi M, Neurath MF, et al.Advanced endoscopic imaging techniques in Crohn's disease[J]. J Crohns Colitis,2014,8(4):261-269.
[40] Barash Y, Azaria L, Soffer S, et al.Ulcer severity grading in video capsule images of patients with Crohn's disease: an ordinal neural network solution[J]. Gastrointest Endosc,2021,93(1):187-192.
[41] Gubatan J, Levitte S, Patel A, et al.Artificial intelligence applications in inflammatory bowel disease: emerging technologies and future directions[J]. World J Gastroenterol, 2021,27(17):1920-1935.
[42] Mohammed Vashist N, Samaan M, Mosli MH, et al. Endoscopic scoring indices for evaluation of disease activity in ulcerative colitis[J]. Cochrane Database Syst Rev,2018,1(1): Cd011450.
[43] Allen PB, Bonovas S, Danese S, et al.Evolving primary and secondary endpoints in randomized controlled trials leading to approval of biologics and small molecules in IBD: an historical perspective[J]. Expert Opin Biol Ther,2020,20(2):151-161.
[44] Schroeder KW, Tremaine WJ, Ilstrup DM.Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. a randomized study[J]. N Engl J Med, 1987,317(26):1625-1629.
[45] 中华医学会消化病学分会炎症性肠病学组. 中国消化内镜技术诊断与治疗炎症性肠病的专家指导意见[J]. 中华炎性肠病杂志,2020,4(4):283-291.
[46] Gottlieb K, Requa J, Karnes W, et al.Central reading of ulcerative colitis clinical trial videos using neural networks[J]. Gastroenterology,2021,160(3):710-719.
[47] Stidham RW, Cai L, Cheng S, et al.Using computer vision to improve endoscopic disease quantification in therapeutic clinical trials of ulcerative colitis[J]. Gastroenterology,2024, 166(1):155-167.
[48] Sturm A, Maaser C, Calabrese E, et al.ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 2: IBD scores and general principles and technical aspects[J]. J Crohns Colitis,2019,13(3):273-284.
[49] Maaser C, Sturm A, Vavricka SR, et al.ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: initial diagnosis, monitoring of known IBD, detection of complications[J]. J Crohns Colitis,2019,13(2):144-164.
[50] Ben-Horin S, Lahat A, Amitai MM, et al.Assessment of small bowel mucosal healing by video capsule endoscopy for the prediction of short-term and long-term risk of Crohn's disease flare: a prospective cohort study[J]. Lancet Gastroenterol Hepatol,2019,4(7):519-528.
[51] Kopylov U, Koulaouzidis A, Klang E, et al.Monitoring of small bowel Crohn's disease[J]. Expert Rev Gastroenterol Hepatol,2017,11(11):1047-1058.
[52] Kopylov U, Yung DE, Engel T, et al.Diagnostic yield of capsule endoscopy versus magnetic resonance enterography and small bowel contrast ultrasound in the evaluation of small bowel Crohn's disease: systematic review and meta-analysis[J]. Dig Liver Dis,2017,49(8):854-863.
[53] Gralnek IM, Defranchis R, Seidman E, et al.Development of a capsule endoscopy scoring index for small bowel mucosal inflammatory change[J]. Aliment Pharmacol Ther,2008,27(2):146-154.
[54] Ferreira JPS, De Mascarenhas Saraiva M, Afonso JPL, et al. Identification of ulcers and erosions by the novel Pillcam™ Crohn's capsule using a convolutional neural network: a multicentre pilot study[J]. J Crohns Colitis,2022,16(1): 169-172.
[55] Pennazio M, Rondonotti E, Despott EJ, et al.Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2022[J]. Endoscopy,2023,55(1):58-95.
[56] Qin K, Li J, Fang Y, et al.Convolution neural network for the diagnosis of wireless capsule endoscopy: a systematic review and meta-analysis[J]. Surg Endosc,2022,36(1): 16-31.
[57] Majtner T, Brodersen JB, Herp J, et al.A deep learning framework for autonomous detection and classification of Crohn's disease lesions in the small bowel and colon with capsule endoscopy[J]. Endosc Int Open,2021,9(9):e1361-e1370.
[58] Aoki T, Yamada A, Aoyama K, et al.Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network[J]. Gastrointest Endosc,2019,89(2):357-363.
[59] De Maissin A, Vallée R, Flamant M, et al.Multi-expert annotation of Crohn's disease images of the small bowel for automatic detection using a convolutional recurrent attention neural network[J]. Endosc Int Open,2021,9(7):e1136-e1144.
[60] Klang E, Grinman A, Soffer S, et al.Automated detection of Crohn's disease intestinal strictures on capsule endoscopy images using deep neural networks[J]. J Crohns Colitis,2021, 15(5):749-756.
[61] Furube T, Takeuchi M, Kawakubo H, et al.Automated artificial intelligence-based phase-recognition system for esophageal endoscopic submucosal dissection (with video)[J]. Gastrointest Endosc,2024,99(5):830-838.
[62] Cao J, Yip HC, Chen Y, et al.Intelligent surgical workflow recognition for endoscopic submucosal dissection with real-time animal study[J]. Nat Commun,2023,14(1):6676.
[63] Berzin TM, Parasa S, Wallace MB, et al.Position statement on priorities for artificial intelligence in GI endoscopy: a report by the ASGE Task Force[J]. Gastrointest Endosc,2020,92(4):951-959.
[64] Arif AA, Jiang SX, Byrne MF.Artificial intelligence in endoscopy:overview,applications,and future directions[J]. Saudi J Gastroenterol,2023,29(5):269-277.
[65] Christou CD, Tsoulfas G.Challenges involved in the application of artificial intelligence in gastroenterology:the race is on![J]. World J Gastroenterol,2023,29(48):6168-6178.
[66] Parasa S, Berzin T, Leggett C, et al.Consensus statements on the current landscape of artificial intelligence applications in endoscopy,addressing roadblocks,and advancing artificial intelligence in gastroenterology[J]. Gastrointest Endosc, 2025,101(1):2-9.
[67] Zhao L, Wang N, Zhu X, et al.Establishment and validation of an artificial intelligence-based model for real-time detection and classification of colorectal adenoma[J]. Sci Rep,2024,14(1):10750.
[68] Chung GE, Lee J, Lim SH, et al.A prospective comparison of two computer aided detection systems with different false positive rates in colonoscopy[J]. npj Digit Med,2024,7(1):366.
[69] Gao Y, Wen P, Liu Y, et al.Application of artificial intelligence in the diagnosis of malignant digestive tract tumors:focusing on opportunities and challenges in endoscopy and pathology[J]. J Transl Med,2025,23(1):412.
[70] Catlow J, Bray B, Morris E, et al.Power of big data to improve patient care in gastroenterology[J]. Frontline Gastroenterol,2022,13(3):237-244. |