[1] 陈意,高强. 脑卒中运动功能障碍康复的研究进展[J]. 华西医学,2022,37(5):757-764. [2] 王一然,冷志伟,赵艺皓,等. 我国康复服务供需衔接的保障机制问题分析[J]. 中国卫生政策研究,2022,15(2):65-70. [3] 范韫仪,王一然,郑晓瑛. 中国老年残疾人口康复服务利用现状及影响因素分析[J]. 中国卫生政策研究,2022,15(5):31-39. [4] 施杰洪,王宁华. 机器人技术在康复医学领域的应用现状与进展[J]. 机器人外科学杂志,2024,5(6):1154-1166. [5] 丁和标,廖泰明,李雨彬. 上肢康复机器人的结构设计[J]. 机械制造,2022,60(8):33-36. [6] 徐冬梅,刘华,袁建,等. 基于脑神经可塑性的上肢康复机器人对脑卒中患者运动性失语症及认知功能的影响[J]. 中国老年学杂志,2023,43(6):1363-1366. [7] 冯立春,冯永利,王宝中,等. 面向肩关节康复设备的研究进展[J]. 机械传动,2024,48(7):167-176. [8] Hogan N, Krebs HI.MIT-MANUS: a workstation for manual therapy and training[J]. IEEE Robot Autom Mag, 1992, 11(4): 161-165. [9] Lum PS, Burgar CG, Shor PC, et al.Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis[J]. IEEE Trans Neural Syst Rehabil Eng,2004, 12(2): 186-194. [10] Rosati G, Gallina P, Masiero S.Design, implementation and clinical tests of a wire-based robot for neurorehabilitation[J]. IEEE Trans Neural Syst Rehabil Eng, 2007, 15(4): 560-569. [11] Loureiro R, Amirabdollahian F, Harwin W.A Gentle/S approach to robot assisted neuro-rehabilitation[J]. Adv Rehabil Robot, 2004, 10(2): 347-363. [12] Culmer PR, Jackson AE, Makower SG, et al.A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke[J]. J Neurosci Methods, 2011, 197(2): 259-269. [13] 王洪波,闫勇敢,王辛诚,等. 末端牵引式手指康复机器人设计及其柔顺性控制方法[J]. 中国科技论文,2020,15(7):743-749. [14] Nef T, Mihelj M, Riener R, et al.ARMin-Exoskeleton for arm therapy in stroke patients[J]. Proc IEEE Int Conf Rehabil Robot (ICORR), 2007, 11(3): 68-74. [15] Mihelj M, Nef T, Riener R.ARMin Ⅱ-7 DoF rehabilitation robot: mechanics and kinematics[J]. Proc IEEE Int Conf Autom Robot (ICAR), 2007, 10(6): 4120-4125. [16] Gopura R, Kiguchi K, Li Y.SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control[J]. Proc IEEE/RSJ Int Conf Intell Robots Syst (IROS), 2009, 12(4): 1126-1131. [17] Zimmermann Y, Sommerhalder M, Wolf P, et al.ANYexo 2.0: a fully actuated upper-limb exoskeleton for manipulation and joint-oriented training in all stages of rehabilitation[J]. IEEE Trans Robot, 2023, 39(3): 2131-2150. [18] Xiao F, Gao Y, Wang Y, et al.Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton[J]. J Mech Sci Technol, 2018, 32(3): 855-864. [19] Iqbal J, Tsagarakis NG, Caldwell DG.Four-fingered lightweight exoskeleton robotic device accommodating different hand sizes[J]. Electron Lett, 2015, 51(12): 888-890. [20] Yang SH, Koh CL, Hsu CH, et al.An instrumented glove-controlled portable hand-exoskeleton for bilateral hand rehabilitation[J]. Biosensors (Basel), 2021, 11(12): 495. [21] 王岩,葛冬冬,刘蓓蓓,等. 上肢康复机器人任务导向性训练对肩关节功能障碍患者的疗效观察[J]. 中国康复,2024,39(11):674-677. [22] Chinembiri B, Ming Z, Kai S, et al.The fourier M2 robotic machine combined with occupational therapy on post-stroke upper limb function and independence-related quality of life: a randomized clinical trial[J]. TOP Stroke Rehabil, 2021, 28(1): 1-18. [23] Jiang S, You H, Zhao W, et al.Effects of short-term upper limb robot-assisted therapy on the rehabilitation of sub-acute stroke patients[J]. Technol Health Care, 2021, 29(2): 295-303. [24] Colomer C, Baldoví A, Torromé S, et al.Efficacy of Armeo® Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis[J]. Neurologia, 2013, 28(5): 261-267. [25] Christensen KB, Rindom HK, Jensen DR, et al.Evaluation of the implementation of Armeo® Spring in a specialized neurorehabilitation center[J]. IEEE Int Conf Rehabil Robot, 2022, 2022: 1-5. [26] Staubli P, Nef T, Klamroth-Marganska V, et al.Effects of intensive arm training with the rehabilitation robot ARMin Ⅱ in chronic stroke patients: four single-cases[J]. J Neuroeng Rehabil, 2009, 6: 46. [27] Sale P, Bovolenta F, Agosti M, et al.Short-term and long-term outcomes of serial robotic training for improving upper limb function in chronic stroke[J]. Int J Rehabil Res, 2014, 37(1): 67-73. [28] Aprile I, Germanotta M, Cruciani A, et al.Upper limb robotic rehabilitation after stroke: a multicenter, randomized clinical trial[J]. J Neurol Phys Ther, 2020, 44(1): 3-14. [29] He YZ, Huang ZM, Deng HY, et al.Feasibility, safety, and efficacy of task-oriented mirrored robotic training on upper-limb functions and activities of daily living in subacute poststroke patients: a pilot study[J]. Eur J Phys Rehabil Med, 2023, 59(6): 660-668. [30] Kim TY, Kim SH, Ko H.Design and implementation of BCI-based intelligent upper limb rehabilitation robot system[J]. ACM Trans Internet Technol, 2021, 21(3): 1-17. [31] Liu L, Jin M, Zhang L, et al.Brain-computer interface-robot training enhances upper extremity performance and changes the cortical activation in stroke patients: a functional near-infrared spectroscopy study[J]. Front Neurosci, 2022, 16: 809657. [32] Xie C, Lyu Y, Li G, et al.A cable-driven upper limb rehabilitation robot with muscle-synergy-based myoelectric controller[J]. IEEE Trans Robot, 2024, 40(6): 3199-3211. [33] Li J, Wang Q, Fang Y.Adaptive neural network-based practical predefined-time nonsingular terminal sliding mode control for upper limb rehabilitation robots[J]. Commun Nonlinear Sci Numer Simul, 2024, 130: 110135. |