[1] Ross-Innes C S, Becq J, Warren A, et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma[J].Nat Genet, 2015,47(9):1038-1046. [2] Weaver J M J, Ross-Innes C S, Shannon N, et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis[J].Nat Genet,2014,46(8):837-843. [3] Stachler M D, Camarda N D, Deitrick C, et al.Detection of mutations in Barrett’s esophagus before progression to high-grade dysplasia or adenocarcinoma[J].Gastroenterology,2018,155(1):156-167. [4] Guo X, Tang Y, Zhu W.Distinct esophageal adenocarcinoma molecular subtype has subtype-specific gene expression and mutation patterns[J].BMC Genomics,2018,19(1):769. [5] Horvath B, Singh P, Xie H, et al.Expression of P53 predicts risk of prevalent and incident advanced neoplasia in patients with Barrett’s esophagus and epithelial changes indefinite for dysplasia[J].Gastroenterol Rep (Oxf),2016,4(4):304-309. [6] Kastelein F, Biermann K, Steyerberg E W, et al.Aberrant P53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett’s oesophagus[J].Gut,2013,62(12):1676-1683. [7] Yan H P, Roberts L J, Davies S S, et al.Isolevuglandins as a gauge of lipid peroxidation in human tumors[J].Free Radic Biol Med,2017,106(5):62-68. [8] Pretto G, Gurski R R, Binato M, et al.Increase of epidermal growth factor receptor expression in progression of GERD,Barrett and adenocarcinoma of esophagus[J].Dig Dis Sci,2013,58(1):115-122. [9] Kim J, Bowlby R, Mungall A, et al.Integrated genomic characterization of oesophageal carcinoma[J].Nature,2017,541(7636):169-175. [10] Xiong D D, He R Q, Lan A H, et al. Clinical significances of p27 in digestive tract cancers:a comprehensive analysis on immunohistochemistry staining, published literatures, microarray and RNA-seq data[J].Oncotarget, 2018, 9(15):12284‐12303. [11] Alves-Fernandes D K, Jasiulionis M G. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer[J].Int J Mol Sci,2019,20(13):3153. [12] Majka J, Wierdak M, Szlachcic A, et al.Interaction of epidermal growth factor with COX-2 products and peroxisome proliferator-activated receptor-γ system in experimental rat Barrett’s esophagus[J].Am J Physiol Gastrointest Liver Physiol,2020,318(3):G375-G389. [13] Haque S, Morris J C.Transforming growth factor-β: A therapeutic target for cancer[J].Hum Vaccin Immunother,2017,13(8):1741-1750. [14] Lee S W, Lien H C, Lin C C, et al.Low expression of transforming growth factor β in the epithelium of Barrett’s esophagus[J].Gastroenterology Res,2018,11(3):189-194. [15] Wang D H, Tiwari A, Kim M E, et al. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia[J].Clin Invest, 2014, 124(9): 3767‐3780. [16] Gibson M K, Zaidi A H, Davison J M, et al. Prevention of Barrett esophagus and esophageal adenocarcinoma by smoothened inhibitor in a rat model of gastroesophageal reflux disease[J].Ann Surg,2013,258(1):82‐88. [17] Götzel K, Chemnitzer O, Maurer L, et al.In-depth characterization of the Wnt-signaling/β-catenin pathway in an in vitro model of Barrett’s sequence[J].BMC Gastroenterol,2019,19(1):38. [18] Grewal U S, Randhawa M S, Mehta A.Role of mitochondrial markers in improved detection and risk-stratification in Barrett’s esophagus patients[J].Yale J Biol Med,2019,92(3):533-539. [19] Phelan J J, Mac Carthy F, Feighery R, et al.Differential expression of mitochondrial energy metabolism profiles across the metaplasia-dysplasia-adenocarcinoma disease sequence in Barrett’s oesophagus[J].Cancer Lett,2014,354(1):122-131. [20] Varghese S, Newton R, Ross-Innes C S, et al. Analysis of dysplasia in patients with Barrett’s esophagus based on expression pattern of 90 genes[J].Gastroenterology,2015,149(6):1511-1518. |