[1] Turkiewicz A, Petersson IF, Björk J, et al.Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032[J]. Osteoarthritis Cartilage, 2014, 22(11): 1826-1832. [2] 薛庆云, 王坤正, 裴福兴, 等. 中国40岁以上人群原发性骨关节炎患病状况调查[J]. 中华骨科杂志, 2015, 35(12): 1206-1212. [3] Sharma L.Osteoarthritis of the knee[J]. N Engl J Med, 2021, 384(1): 51-59. [4] Chalian M, Li X, Guermazi A, et al.The QIBA profile for MRI-based compositional imaging of knee cartilage[J]. Radiology, 2021, 301(2): 423-432. [5] Safiri S, Kolahi AA, Smith E, et al.Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017[J]. Ann Rheum Dis, 2020, 79(6): 819-828. [6] Bajpayee AG, Grodzinsky AJ.Cartilage-targeting drug delivery: can electrostatic interactions help?[J]. Nat Rev Rheumatol, 2017, 13(3):183-193. [7] 中华医学会骨科学分会关节外科学组, 中国医师协会骨科医师分会骨关节炎学组,国家老年疾病临床医学研究中心(湘雅医院),等.中国骨关节炎诊疗指南(2021年版)[J]. 中华骨科杂志, 2021, 41(18):1291-1314. [8] Oei E, Wick M, Müller-Lutz A, et al.Cartilage imaging: techniques and developments[J]. Semin Musculoskelet Radiol, 2018, 22(2): 245-260. [9] Roemer FW, Demehri S, Omoumi P, et al.State of the art: imaging of osteoarthritis—revisited 2020[J]. Radiology, 2020, 296(1): 5-21. [10] Mansur HS, Mansur AAP, Curti E, et al.Bioconjugation of quantum-dots with chitosan and N,N,N-trimethyl chitosan[J]. Carbohydr Polym, 2012, 90(1): 189-196. [11] Labens R, Daniel C, Hall S, et al.Effect of intra-articular administration of superparamagnetic iron oxide nanoparticles (SPIONs) for MRI assessment of the cartilage barrier in a large animal model[J]. PLoS One, 2017, 12(12): e0190216. [12] Yarmola EG, Shah Y, Arnold DP, et al.Magnetic capture of a molecular biomarker from synovial fluid in a rat model of knee osteoarthritis[J]. Ann Biomed Eng, 2016, 44(4): 1159-1169. [13] Lu R, Zhang Y, Tao H, et al.Gadolinium-hyaluronic acid nanoparticles as an efficient and safe magnetic resonance imaging contrast agent for articular cartilage injury detection[J]. Bioact Mater, 2020, 5(4): 758-767. [14] Freedman JD, Lusic H, Snyder BD, et al.Tantalum oxide nanoparticles for the imaging of articular cartilage using X-ray computed tomography: visualization of ex vivo/in vivo murine tibia and ex vivo human index finger cartilage[J]. Angew Chem Int Ed Engl, 2014, 53(32): 8406-8410. [15] Honkanen MKM, Saukko AEA, Turunen M J, et al.Triple contrast CT method enables simultaneous evaluation of articular cartilage composition and segmentation[J]. Ann Biomed Eng, 2020, 48(2): 556-567. [16] Saukko AEA, Honkanen JTJ, Xu W, et al.Dual contrast CT method enables diagnostics of cartilage injuries and degeneration using a single CT image[J]. Ann Biomed Eng, 2017, 45(12): 2857-2866. [17] Zhou Y, Ni J, Wen C, et al.Light on osteoarthritic joint: from bench to bed[J]. Theranostics, 2022, 12(2): 542-557. [18] Sun Y, Sobel ES, Jiang H.First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints[J]. Med Phys, 2011, 38(7): 4009-4017. [19] Chen L, Ji Y, Hu X, et al.Cationic poly-l-lysine-encapsulated melanin nanoparticles as efficient photoacoustic agents targeting to glycosaminoglycans for the early diagnosis of articular cartilage degeneration in osteoarthritis[J]. Nanoscale, 2018, 10(28): 13471-13484. [20] Ahmed K, Saikat A, Moni A, et al.Lactoferrin: potential functions, pharmacological insights, and therapeutic promises[J]. J Adv Biotechnol Exp Ther, 2021, 4(2): 223. [21] Scognamiglio F, Travan A, Borgogna M, et al.Development of biodegradable membranes for the delivery of a bioactive chitosan‐derivative on cartilage defects: A preliminary investigation[J]. J Biomed Mater Res, 2020, 108(7): 1534-1545. [22] Samarasinghe RM, Kanwar RK, Kanwar JR.The effect of oral administration of iron saturated-bovine lactoferrin encapsulated chitosan-nanocarriers on osteoarthritis[J]. Biomaterials, 2014, 35(26): 7522-7534. [23] Tao W, He Z.ROS-responsive drug delivery systems for biomedical applications[J]. Asian Journal of Pharmaceutical Sciences, 2018, 13(2): 101-112. [24] Xu X, Shi D, Shen Y, et al.Full-thickness cartilage defects are repaired via a microfracture technique and intraarticular injection of the small-molecule compound kartogenin[J]. Arthritis Res Ther, 2015, 17(1): 20. [25] Mohan G, Magnitsky S, Melkus G, et al.Kartogenin treatment prevented joint degeneration in a rodent model of osteoarthritis: A pilot study: kartogenin treatment for OA[J]. J Orthop Res, 2016, 34(10): 1780-1789. [26] Fan W, Li J, Yuan L, et al.Intra-articular injection of kartogenin-conjugated polyurethane nanoparticles attenuates the progression of osteoarthritis[J]. Drug Delivery, 2018, 25(1): 1004-1012. [27] Jiang T, Kan H-M, Rajpura K, et al.Development of targeted nanoscale drug delivery system for osteoarthritic cartilage tissue[J]. J Nanosci Nanotechnol, 2018, 18(4): 2310-2317. [28] Whitmire RE, Wilson DS, Singh A, et al.Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins[J]. Biomaterials, 2012, 33(30): 7665-7675. [29] Liu X, Corciulo C, Arabagian S, et al.Adenosine-Functionalized biodegradable PLA-b-PEG nanoparticles ameliorate osteoarthritis in rats[J]. Sci Rep, 2019, 9(1): 7430. [30] DiDomenico CD, Lintz M, Bonassar LJ. Molecular transport in articular cartilage—what have we learned from the past 50 years?[J]. Nat Rev Rheumatol, 2018, 14(7): 393-403. [31] Kundrotas G, Karabanovas V, Pleckaitis M, et al.Uptake and distribution of carboxylated quantum dots in human mesenchymal stem cells: cell growing density matters[J]. J Nanobiotechnology, 2019, 17(1): 39. [32] Yoshioka T, Mishima H, Kaul Z, et al.Fate of bone marrow mesenchymal stem cells following the allogeneic transplantation of cartilaginous aggregates into osteochondral defects of rabbits[J]. J Tissue Eng Regen Med, 2011, 5(6): 437-443. [33] Markides H, Newell KJ, Rudorf H, et al.Ex vivo MRI cell tracking of autologous mesenchymal stromal cells in an ovine osteochondral defect model[J]. Stem Cell Res Ther, 2019, 10(1): 25. [34] Van Buul GM, Kotek G, Wielopolski P A, et al.Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides[J]. PLoS One, 2011, 6(2): e17001. [35] Chen J, Wang F, Zhang Y, et al.In vivo tracking of superparamagnetic iron oxide nanoparticle labeled chondrocytes in large animal model[J]. Ann Biomed Eng, 2012, 40(12): 2568-2578. [36] Pang P, Wu C, Shen M, et al.An MRI-visible non-viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells[J]. PLoS One, 2013, 8(10): e76612. [37] Theruvath AJ, Nejadnik H, Lenkov O, et al.Tracking stem cell implants in cartilage defects of minipigs by using ferumoxytol-enhanced MRI[J]. Radiology, 2019, 292(1): 129-137. [38] Chen Z, Yan C, Yan S, et al.Non-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging[J]. Theranostics, 2018, 8(4): 1146-1158. [39] Zare S, Mehrabani D, Jalli R, et al.MRI-tracking of dental pulp stem cells in vitro and in vivo using dextran-coated superparamagnetic iron oxide nanoparticles[J]. J Clin Med, 2019, 8(9):1418. [40] Su JY, Chen SH, Chen YP, et al.Evaluation of magnetic nanoparticle-labeled chondrocytes cultivated on a type II collagen-chitosan/poly(lactic-co-glycolic) acid biphasic scaffold[J]. Int J Mol Sci, 2017, 18(1):87. |